Synthesis and catalytic application of magnetic Co–Cu nanowires

نویسندگان

  • Lijuan Sun
  • Xiaoyu Li
  • Zhiqiang Xu
  • Kenan Xie
  • Li Liao
چکیده

A rapid, template-free method was developed to prepare magnetic, bimetallic Co-Cu nanowires via liquid phase reduction and metal replacement under an external magnetic field. The characterization results confirmed that the as-prepared product was bimetallic Co-Cu nanowires with a desirable linear structure. Additionally, the magnetic hysteresis loop showed that the bimetallic Co-Cu nanowires were paramagnetic, which meant they could be easily separated from the reaction mixture. Furthermore, they were applied to the hydrolysis system of ammonia borane as a catalyst for the first time. More importantly, the catalysis results showed that the bimetallic nanowires possessed appealing catalytic performance. Therefore, a rapid and facile synthesis method is introduced which is capable of preparing bimetallic Co-Cu nanowires with great potential for industrial applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of Catalytic Performance of Co3O4 and Cu-Co Nano Metal Oxides in Combustion of Aromatics

Two Cu-Co and Co3O4 oxides were synthesized by the conventional sol-gel auto-combustion and their physical-chemical properties were characterized by XRD, FTIR, SEM, TPR and XPS. The XRD results indicated that copper-cobalt oxide appeared in a mixture form of Cu0.15Co2.85O4 spinel and CuO phases, whereas the cobalt oxide exhibited in the pure form of Co3O4 spinel. The FTIR approved the formation...

متن کامل

Investigations of Microstructures and Magnetic Properties through Off-time between Pulses and Controlled Cu Content in Pulse Electrodeposited NiCu Nanowires

NiCu alloy nanowires arrays were embedded into the anodic aluminum oxide (AAO) template by ac-pulse electrodeposition. Different off-time were used in electrolyte with constant concentration of Ni and Cu and acidity of 3. The effect of deposition parameters on alloy contents was investigated by studying the microstructure and magnetic properties of as-deposited NiCu alloy nanowires. Atomic forc...

متن کامل

CoFe Layers Thickness and Annealing Effect on the Magnetic Behavior of the CoFe/Cu Multilayer Nanowires

CoFe/Cu multilayer nanowires were electrodeposited into anodic aluminum oxide templates prepared by a two-step mild anodization method, using the single-bath technique. Nanowires with 30 nm diameter and the definite lengths were obtained. The effect of CoFe layers thickness and annealing on the magnetic behavior of the multilayer nanowires was investigated. The layers thickness was controlled t...

متن کامل

Investigations of Magnetic Properties Through Electrodeposition Current and Controlled Cu Content in Pulse Electrodeposited CoFeCu Nanowires

CoFeCu nanowires were deposited by pulsed electrodeposition technique into the porous alumina templates by a two-step mild anodization technique, using the single-bath method. The electrodeposition was performed in a constant electrolyte while Cu constant was controlled by electrodeposition current. The electrodeposition current was 3.5, 4.25, 5 and 6 mA. The effect of electrodeposition current...

متن کامل

Spinel ferrites as efficient magnetically reusable nanocatalysts in the solvent-free synthesis of substituted trisphenols

A series of copper and cobalt substituted nanospinel ferrites have been synthesized by the hydrothermal method. These compounds were characterized by FT-IR, XRD, EDX, SEM and VSM techniques. All of the synthesized nanospinel ferrites were found to be highly efficient and magnetically recoverable in the solvent-free synthesis of substituted 2,6-(2-hydroxybenzyl)-phenols (trisphenols). A wide ran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017